Read this document carefully before using this device. The guarantee will be expired by damaging of the device if you don't attend to the directions in the user manual. Also we don't accept any compensations for personal injury, material damage or capital disadvantages.

ENDA EI2041 PROGRAMMABLE INDICATOR

Thank you for choosing ENDA EI2041 INDICATOR.
$35 \times 77 \mathrm{~mm}$ sized.
4 digits display.
Display scale can be adjusted between -1999 and 4000.
Decimal point can be adjusted between 1st. and 3rd. digits.
Measurement unit can be displayed.
Selectable four different standard input types ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-1 \mathrm{~V}, 0-10 \mathrm{~V}$).

- User can calibrate the device according to specified input type.

Sampling time can be adjusted in four steps.
Stores maximum and minimum measurement values.
Maximum and minimum values can be stored and displayed.
Two relay output for control and alarm (Optional).
Control option below and above set value.
Selectable independent, deviation and band alarm.

Sensor supply output (Optional).
RS485 Modbus RTU communication protocol feature (Optional).

- CE marked according to European standards.

TECHNICAL SPECIFICATIONS

ENVIRONME NTAL CONDITIONS

Ambient/storage temperature	$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing).

Max. relative humidity 80% Relative humidity for temperatures up to $31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
Rated pollution degree Height According to EN 60529 Front panel : IP65 Rear panel : IP20
Max. 2000m.
Do not use the device in locations subject to corrosive and flammable gases.
ELECTRICAL CHARACTERISTICS

Supply	230 V AC 110 V AC $+\% 10-\% 20,12 / 24 \mathrm{~V}$ AC $\pm \% 10,50 / 60 \mathrm{~Hz}$ or $9-30 \mathrm{~V}$ DC /7-24V AC $\pm \% 10$ SMPS optional.			
Power consumption	Max. 7VA.			
Wiring	$2.5 \mathrm{~mm}^{2}$ screw-terminal connections.			
Date retention	EEPROM (Min. 10 years).			
EMC	EN 61326-1: 2013.			
Safety requirements	EN 61010-1: 2010 (Pollution degree 2, overvoltage category II, measurement category I).\square EI2041 cannot be used if measurement category II, III or IV is required.			
Input type	Measurement range		Measurement accuracy	Input empedan
	Min.	Max.		
$0-1 \mathrm{~V}$ DC voltage	OV	1.1 V	$\pm 0,5 \%$ (of full scale)	Approx. 100k Ω
$0-10 \mathrm{~V}$ DC voltage	OV	12 V	$\pm 0,5 \%$ (of full scale)	Approx. $100 \mathrm{k} \Omega$
$0-20 \mathrm{~mA} \mathrm{DC} \mathrm{current}$	OmA	25 mA	$\pm 0,5 \%$ (of full scale)	Approx. 10Ω
4-20mA DC current	OmA	25 mA	$\pm 0,5 \%$ (of full scale)	Approx. 10Ω

While the current measuring mode, input impedance becomes 10Ω. Therefore, in current mode, the device must not be connected any voltage input. Otherwise, the device is broken. While the device is running in the voltage measurement mode and if required to change to current measurement mode, then firstly the voltage inputs mustbe removed and after that, inputtype mustbe changed to one of the currentmeasurement modes.

OUTPUTS

Sensor power supply	All sensor supply outputs maximum 50 mA . (Regulated and isolated).
O	R

Out	Relay: $250 \mathrm{~V} \mathrm{AC}$,8 A (resistive load), NO

Alarm	Relay: $250 \mathrm{~V} \mathrm{AC}, 8 \mathrm{~A}$ (resistive load), NO

Life expectancy for relay Mechanical 30. Mio. operation; 100.000 operation at 250 V AC, 8 A resistive load
CONTROL

Control type	Double set-point and alarm control.

Control algorithm
On-Off control.
Hysteres is Adjustable between 1 ... 200.

HOUSING

Housing type

Dimentions
Weight
Weight
Enclosure material
Suitable for flush-panel mounting according to DIN 43700.
W77xH35xD71mm.
Approx. 350 g (after packaging)
Self extinguishing plastics.
While cleaning the device, solvents (thinner, gasoline, acid etc.) or corrosive materials must not be used.

DIMENSIONS

To removing the mounting clamps :

- Push the flush-mounting
clamps in direction 1
- Pull out the clamps in direction 2.

Note:

1) While panel mounting, additional distance required
for connection cables should be considered.
2) Panel thickness should be maximum 7 mm .
3) If there is no 60 mm free space at back side of the
device, it would be difficult to remove it from the panel.

CONNECTION DIAGRAM

ENDA EI2041 is intended for installation in control panels. Make sure that the device is used only for intended purpose. The shielding must be grounded on the instrument side. During an installation, all of the cables that are connected to the device must be free of energy. The device must be protected against inadmissible humidity, vibrations, severe soiling. Make sure that the operation temperature is not exceeded. All input and output lines that are not connected to the supply network must be laid out as shielded and twisted cables. These cables should not be close to the power cables or components. The installation and electrical connections must be carried on by a qualified staff and must be according to the relevant locally applicable regulations.

ENDA industrial electronics sn: xxxxxxxxx E12041-230 programmable indicator $\quad \||||||||||||||||||||||||| |$

ENDA industrialelectronics sn:xxxxxxxxx E12041-230.2R-055.R5
 ROHS
 $0.4-0.5 \mathrm{Nm}$.

Note: 1) Mains supply cords shall meet the requirements of IEC 60227 or IEC 60245
2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.

Displaying the Measurement Unit

In "Running Mode", if ser keys are pressed together for 3 seconds, measurement unit appears. See Ún it parameter for programming.

Resetting Maximum and Minimum Measurement Values

571	$\begin{aligned} & \text { Measurement } \\ & \text { Value } \end{aligned} \rightarrow \stackrel{\text { ser }}{r E S}$	In "Running Mode", if key pressed for 2 seconds, maximum and minimum measurement values become equal to the measured value at current time and the \square res message appears on display.
Locking and Unlocking		
571	$\begin{aligned} & \text { Measurement } \\ & \text { Value } \end{aligned} \rightarrow \stackrel{\text { SET }}{\mathrm{Loc}}$	Keys are locked. If \square keys are pressed together for 2 seconds, L oc message appears and keys are locked. For unlocking, \square keys are pressed together for 2 seconds, uni message Keys are unlocked. appears and keys are unlocked. If one of the keys is pressed while the device locked, Loc message appears on display.

Setting Up User Calibration Values

No calibration required if the standard inputs ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-1 \mathrm{~V}$ and $0-10 \mathrm{~V}$) are used. CRL.E Parameter should be set as U. inP if no standard input used. In user menu, if key is pressed for 7 seconds, L.inP message appears on display and calibration menu is entered.
Voltage or current which are corresponds to L SLL parameter is applied to device input and ${ }^{\text {ser }}$ key is pressed. If operation is success, Succ message appears on display and proceeding to the next step.
In this step, while $h, 4, \mathrm{PP}$ message displayed, voltage or current which are corresponds to $L S[L$ parameter is applied to device input and ser is pressed. If operation is success, Succ then C.End message appears on display, calibration process is completed and the device will start running according to the new calibration values.

ERROR MESSAGES \& DESCRIPTIONS !

Error conditions and descriptions are listed below.

* If voltage or current is difference and lower than half of full scale between $\mathrm{H} ., \mathrm{n} \mathrm{P}$ and L . ınP voltage or current.
* If excessive high-low input current or voltage is applied
* If an error occurs during L . $\mathrm{InP}^{\mathrm{P}}$ calibration, $\operatorname{Err} \boldsymbol{I}$ message appears on display
* If an error occurs during $H ., \cap P$ calibration, $E r r \mathcal{Z}$ and $\mathcal{L} \cdot E r r$ message appears on display.
* If user calibration is not applied before and an error occurs during calibration process, device runs according to standard calibration values.
* If user calibration is applied before and an error occurs during calibration process, device runs according to previous user calibration values.

Changing Parameters

If \begin{tabular}{l}
keys are pressed together for 2 seconds, P, message appears and user menu entered. Then in user menu, first parameter's is displayed.

When a parameter selected, if | key is pressed selected parameter value appears and displayed parameter can be changed by |
| :--- |
| operation is performed for 3 seconds after the parameter value is being displayed or ser key is pressed, parameter name will be shown again. While |
| parameter name displayed, |\quad keys are pressed together, returned to "Running Mode" without waiting period.

\end{tabular}

Hidden Menu

Programming Mode

If \square key is pressed for 7 seconds $P 己{\underset{y y}{s e x}}_{\text {message appears on the display and hidden menu is entered. Selected }}^{\text {ser }}$ parameter values can be displayed with \square key and canged with \triangle keys. Accessing to the parameters and storing functions are as in the user menu. All parameters can be accessed from this menu.

Parameter Transfer Between Menus

If \square keys are pressed together for 2 seconds, parameter transferred to user menu. In this way up to 12 parameters can be transferred to the user menu.
In user menu, if ${ }^{\text {ssir }}$ keys are pressed together for 2 seconds, parameter is removed from user menu. When a parameter is displayed in the user menu, mA LED lights up in the hidden menu.

Setting Up Measurement Unit (U' n it) Parameters
If pressed ${ }^{\text {ser }}$ key in U' in, ℓ parameter, related digit blinks on display. For desired number, letter or symbol is adjusted by pressing the \square key for related digit. For setting up other digits key is pressed. When parameter setting process is completed, by pressing ${ }^{\text {ser }}$ key or no key is pressed for 3 seconds without pressing any key, parameters can be saved.

PARAMETER LIST

CONFIGURATION PARAMETERS		Initial Value
1. $¢$ P	Input type selection. ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, ~ 5-i \mathrm{~V}, ~ 5-10 \mathrm{~V})$	0-10
${ }^{\text {d }}$ SP.L	Indicator configuration. (Prc 5 : Process value, Pr.ún : 4 Seconds process value, 2 Seconds Ún it value.)	Pre 5
rRtE	Measurement ranges. FRSt : Average of 1 measurement value is gathered in 200 msec . SLo. i: Average of 4 measurement value is gathered in 200 msec . 5 LOL : Average of 8 measurement value is gathered in 200 msec . $5 \mathrm{Lo3}$: Average of 16 measurement value is gathered in 200 msec .	SLo.i
HoLd	Indicator holding parameter. ($n o n E$: instant measurement value, Lo. : minimum value, H , : maximum value is displayed.)	nonE
Un it	Measurement value. (Desired measurement value for unit selection).	nonE
LRL.L	Calibration type. (S.ınP: Standard input type, U', ınP: User defined input type selection).	5. 1 mP
d.Pnt	Decimal point selection. (Adjustable between the 1th. and 3rd digits).	0
L.5CL	Lower scale value. (Adjustable between - 1999 and H5CL value).	0
HSCL	Upper scale value. (Adjustable between L.5CL and 4000 value).	2000
OUTPUT CONTROL PARAMETERS		Initial Value
o.5Et	Output set value. (Adjustable between L.SEL and H.SCL).	2000
0.435	Output hysteresis value. (Adjustable between ' and 200).	2
o.5t8	Output status. (oFF: Output not active, Lo: Becomes active below the setpoint output value, $\boldsymbol{H} \boldsymbol{l}$: Becomes active above the setpoint output value).	ofr
o.Pon	Required relay-on delay time in order to set output to active state after power-up. (Adjustable between 0 and 99 minutes).	$01: 00$
o.ton	Output relay-on delay time. (Adjustable between 0 and 99 minutes).	
o.tof	Output relay-off delay time. (Adjustable between 0 and 99 minutes).	0 1:00
ALARM CONTROL PARAMETERS		Initial Value
R.5Et	Alarm set value. (Adjustable between L .5 LL and HSLCL).	2000
RH3S	Alarm hysteresis value. (Adjustable between ' and 200).	2
Rtcyp	Alarm type. ($\operatorname{nd} \mathcal{E}$: Independent alarm, $d E$: Deviation alarm, b R \cap d: Band alarm)	ind E
R.5t 8	Alarm condition. (oFF:Alarm not active. For independent or deviation alarm, $\mathrm{L} a$: Alarm is active below the set value, $H:$: Alarm is active above the set value. For band alarm, b, H_{1} : Activated in "in-band", bo. H_{1} : Activated in "out-band".)	of F
RPon	Required relay-on delay time in order to set alarm output to active state after power-up. (Adjustable between 0 and 99 minutes).	01:00
Rton	Alarm output relay-on delay time. (Adjustable between 0 and 99 minutes).	01:00
Rt of	Alarm output relay-off delay time. (Adjustable between 0 and 99 minutes).	0 1:00
RS485 MODBUS COMMUNICATION PARAMETERS		Initial Value
Rodr 5	Slave device address. (Adjustable between 1 and 247)	1
bRU'	Baudrate. (Can be adjusted as ; ofF, 1200, 2400, 4800, 9600, 9200 kbps)	9500

MODBUS ADDRESS MAP					
HOLDING REGISTERS					
Holding Register Addresses		Data Type	Data Content	ParameterName	Read / Write Permission
Decimal	Hex				
0000d	0x0000	word	Input type selection. $0=0-20 ; 1=4-20 ; 2=0-1 ; 3=0-10$	LSP	R W
0001d	0x0001	word		rite	R W
0002d	0x0002	word	Indicator locking parameter. $0=n \circ \cap E ; 1=L \circ ; 2=H$,	hoid	R W
0003d	0x0003	word	Decimal point. $0=x ; 1=x . x ; 2=x . x x ; 3=x . x x x$	d.Pnt	R W
0004d	0x0004	word	Scale lower value.	L.5CL	R W
0005d	0x0005	word	Scale upper value.	HSCL	R W
0006d	0x0006	word	Output set value.	o. $5 E t$	R W
0007d	0x0007	word	Output hysteresis value.	0.4 HS	R W
0008d	0x0008	word	Output condition. ($0=0 \% F_{, 1=L} \quad$, 2= $=\boldsymbol{H}$ i)	o.5tR	R W
0009d	0x0009	word	Required relay-on delay time in order to set output to active state after power-up.	o.Pon	R W
0010d	0x000A	word	Output relay-on delay time.	o.ton	R W
0011d	0x000B	word	Output relay-off delay time.	o.tof	R W
0012d	0x000C	word	Alarm set value.	R.5Et	R W
0013d	0x000D	word	Alarm hysteresis value.	RHYS	R W
0014d	0x000E	word		R.typ	R W
0015d	0x000F	word		R.5tR	R W
0016d	0x0010	word	Required relay-on delay time in order to set alarm output to active state after power-up.	R.Pon	R W
0017d	0x0011	word	Alarm output relay-on delay time.	Rton	R W
0018d	0x0012	word	Alarm output relay-off delay time.	Rt of	R W
INPUT REGISTERS					
Holding Register Addresses		Data Type	Data Content	ParameterName	Read / Write Permission
Decimal	Hex				
0000d	0x0000	word	Measured value	-	Read Only
0001d	0x0001	word	Minimum measured value	-	Read Only
0002d	0x0002	word	Maximum measured value	-	Read Only
* Holding and Input Register parameters, which in integer type is defined as signed integer. Timing parameters are defined as seconds. (For example, 01:15 is defined as 75 seconds).					
DISCRATE INPUTS					
Holding Register Addresses		Data Type	Data Content	ParameterName	Read / Write Permission
Decimal	Hex				
0000d	0x0000	bit	OUT Control output condition. (0=OFF; $1=\mathrm{ON}$).	-	Read Only
0001d	0x0001	bit	Alarm control output condition. ($0=O F F ; 1=\mathrm{ON}$).	-	Read Only
COILS					
Coil Addresses		Data Type	Data Content	ParameterName	Read / Write Permission
Decimal	Hex				
0000d	0x0000	bit	Indicator configuration ofF=Pr. $[5, \mathrm{ON}=$ Pr.U'U	dSP.L	R W
0001d	0x0001	bit		[RLLE	R W

[^0]* Applies to devices with Modbus function.

[^0]: Termination should be accomplished by
 attaching 120 Ohm resistors to the start
 and at the end of the communication line.

